

CMS//
2006-07-14

* D R A F T *

Proposal for Web Based Monitoring and
Database Browsing

Francesca Cavallari,

INFN, Rome

William Badgett, Steve Murray
Fermilab

Ricky Egeland

University of Minnesota

Frank Glege
CERN

Zongru Wan

Kansas State University

Abstract

The CMS Online Database contains a wealth of important information
regarding the current and past states of the CMS detector. These data are not
readily viewable from outside the P5 CMS experimental site due to security
restrictions. In this document we propose a light-weight web based interface to
the CMS detector status information in the database designed for users viewing
data remotely. The proposed protocol is simple HTTP with Tomcat/Jakarta hooks
on the server, but with no special options required on the web client browser side.
The output format of the data would consist of histograms, scatter plots, and web
tables viewable on the client’s web browser; and text, Root and XML based files
downloadable via links produced in the web interface. To facilitate the browsing
functionality, we propose a set of meta-data tables to be established describing the
various monitoring tables in the database.

1. Introduction

2. Proposal for meta-data for the PVSS/DCS custom table

The PVSS system provides a standardized set of Oracle database tables to
hold channel sensor definitions and history of changes in those channels. As
such, we have provided a general purpose web based browser that identifies
the existence of such tables in the CMS omds database and presents them to
the user in the form of a tree:

 http://cmsdaq.cern.ch/cmsmon/cmsdb/servlet/SlowControlBrowser

The top level branch of the tree is the database schema owner; subsequent
lower level leafs are a tokenized version of the name of the sensors based on
the contents of the PVSS ELEMENTS table.

However, some sub-detectors (e.g. ECAL) may opt out of using the
prepackaged PVSS tables in favor of a more convenient detector specific set
of tables. There is no way a priori method for a database display application
to know the existence and contents of such tables. Therefore, we propose to
implement a set of CMS standard meta-data database tables that describe the
existence and contents of the sub-detector specific tables.

2.1 CONDITIONS_TABLE_DESCRIPTOR Table

The following entry describes the “CONDITIONS_TABLE_DESCRIPTOR
Table” which establishes what tables have the “Value vs. Time” structure.
The pair of columns (OWNER, TABLE_NAME) must be unique within this
table. The primary key ID forms a foreign key pointing to the ID_TABLE
column of the COLUMN_DESCRIPTOR table described later. The
TIME_COLUMN entry tells which column of the described table contains a
time stamp for the row; Oracle allows three main time stamp types, and the
TIME_DATATYPE column must specify which one, or whether a simple
NUMBER is used. Likewise, RUNNUMBER_COLUMN indicates
(optionally) which column in the described table contains the run number as
created in the CMS_RUNINFO omds database schema, and this number
must be an integer.

Some tables will have columns which correspond to multiple physical
sources of data; to distinguish between these possibilities, use the
POSITION_COLUMN to point to the appropriate column.

http://cmsdaq.cern.ch/cmsmon/cmsdb/servlet/SlowControlBrowser

TABLE_DESCRIPTOR Table
Column Type Description

ID NUMBER(22)
 primary key

Primary key for table, arbitrary
integer

ID_SOURCE NUMBER(22)
 foreign key
 optional

If this table entry is grouped by
the source of data, then this
column contains a pointer to a
CONDITIONS_SOURCE_
DESCRIPTOR table row.

OWNER VARCHAR2
 not null; unique

Schema owner of table being
described

TABLE_NAME VARCHAR2
not null; unique
with OWNER

Table name where the data area
held.

SYSTEM VARCHAR2
not null

Specifies which sub-detector or
sub-system is the source of data

DESCRIPTION VARCHAR2
optional

Human readable text
description of sensor

LABEL VARCHAR2
 optional

Short but human readable label
for table display purposes

IS_ENABLED NUMBER(1)
not null

Flag to indicate current enable
status of the table

IS_PRIVATE NUMBER(1)
Not null

Flag to indicate this table is not
for the general CMS public

TIME_COLUMN VARCHAR2 Name of the table column that
contains the time stamp of the
row data

RUNNUMBER_COLUMN VARCHAR2
 optional

Name of table column that
contains the CMS_RUNINFO
run number value

2.2 CONDITIONS_SOURCE_DESCRIPTOR Table

As an additional layer of hierarchy, sub-detectors may wish to group their
tables according to the source of the data. The following table describes the
CONDITIONS_SOURCE_DESCRIPTOR table. Each row in this table
describes a group of tables in the CONDITIONS_TABLE_DESCRIPTOR

table. The primary key ID of the CONDITIONS_SOURCE_DESCRIPTOR
table points to the ID_SOURCE column of the
CONDITIONS_TABLE_DESCRIPTOR table.

SOURCE_DESCRIPTOR Table
Column Type Description

ID NUMBER(22)
 primary key

Primary key for table, arbitrary
integer

SOURCE_NAME VARCHAR2
 not null; unique

Grouping of tables within a
sub-detector, according to the
source which generated the data

DESCRIPTION VARCHAR2
 optional

Human readable description of
this source of data

IS_ENABLED NUMBER(1)
not null

Flag to indicate current enable
status of the source of data

IS_PRIVATE NUMBER(1)
Not null

Flag to indicate this source is
not for the general CMS public

2.3 CONDITIONS_COLUMN_DESCRIPTOR Table

The following entry defines the CONDTITIONS_COLUMN_
DESCRIPTOR, whose purpose is to specify which columns of the target
table are interesting for viewing purposes. In this table, the (ID_TABLE,
COLUMN_NAME) pair must be unique, and the ID_TABLE column must
point to an entry in the TABLE_DESCRIPTOR_TABLE described above.
A foreign key constraint will be implemented to enforce this rule.

COLUMN_DESCRIPTOR Table
Column Type Description

ID NUMBER(22)
 primary key

Primary key of this table;
arbitrary integer

ID_TABLE NUMBER(22)
Foreign key

Primary key of the parent
TABLE_ DESCRIPTOR
table

OWNER VARCHAR2
not null

Owner of target data table

TABLE_NAME VARCHAR2
not null

Table name of target data
table

COLUMN_NAME VARCHAR2
 not null; unique

Column name within the
TABLE_NAME where the
data are kept; together with
OWNER, TABLE_NAME
and COLUMN_NAME, must
be unique

UNITS VARCHAR2
 optional

Units in which the sensor
values are measured; could
be constrained to set of
known values (could be
separate table)

HARDWARE_ID NUMBER
Optional

CMS Hardware ID, if
applicable

DESCRIPTION VARCHAR2
optional

Human readable text
description of sensor

LABEL VARCHAR2
optional

Short human readable text for
display purposes

TARGET_DATA_TYPE VARCHAR2
optional

Data type to be used when
converting from database
value to program value

BEGIN_VALID DATE
optional

Absolute time after which
data are valid

END_VALID DATE
optional

Absolute time before which
data are valid

POSITION_A_COLUMN VARCHAR2
optional

Defines column which holds
one position variable to fully
specify data

POSITION_A_MIN NUMBER Minimum value of A
POSITION_A_MAX NUMBER Maximum value of A
POSITION_B_COLUMN VARCHAR2 Defines another column

which holds one position
variable to fully specify data

POSITION_B_MIN NUMBER Minimum value of B
POSITION_B_MAX NUMBER Maximum value of B
IS_ENABLED NUMBER(1)

 not null
Flag to indicate current
enable status of the sensor,
value 0 or 1 (default)

IS_PRIVATE NUMBER(1)
 not null

Flag to indicate whether these
data are for public CMS
display value 0 (default) or 1

IS_PLOTTABLE NUMBER(1)
 not null

Flag to indicate whether data
may be easily plotted for
display, value 0 or 1 (default)

MIN_WARNING_THRESHOLD REAL, optional Warning min threshold
MAX_WARNING_THRESHOLD REAL, optional Warning max threshold
MIN_ERROR_THRESHOLD REAL, optional Error min threshold
MAX_ERROR_THRESHOLD REAL, optional Error max threshold

2.4 CONDITIONS_LAST_VALUE Table

In terms of current time monitoring, it is extremely useful to have an easily
accessible record of what the most recent value of a measurement was. To
implement this possibility, we describe the CONDITIONS_LAST_VALUE
table below. The primary key is formed by the pair of values (ID,
POSITION). The ID column points back to the primary key of the
CONDITIONS_COLUMN_DESCRIPTOR table. If there are multiple
physical sources of data, then the POSITION column can be used to
distinguish between them. If there is just one source of data, the POSITION
column can be set to zero.

Filling of this table is envisioned to be mostly via automatic methods. When
a row in the CONDITIONS_COLUMN_DESCRIPTOR table is inserted, a
database trigger will automatically insert a corresponding row(s) in the
CONDITIONS_LAST_VALUE table. Correspondingly, a trigger may be
created on the target data table to update the CONDITIONS_LAST_
VALUE table when an insert takes place.

LAST_VALUE Table
ID NUMBER;

 With POSITION,
forms primary key

Integer pointing to entry
in Column Descriptor
Table

POSITION_A NUMBER
Not null; with ID forms
primary key

If the column represents
multiple physical
sensors, use this column
to denote them; set to
zero if not used.

POSITION_B NUMBER
Not null; with ID
forms primary key

Secondary column to
denote multiple physical
sensors; defaults to 0

LAST_VALUE REAL, optional Last value read from
sensor or other source;
could be filled by
INSERT trigger on data
table

LAST_TIME TIMESTAMP,
optional

Time the
LAST_VALUE was
taken

LAST_STATUS NUMBER(11)
optional

Status of last
measurement per PVSS,
or particular subsystem
if not PVSS

2.5 Creating and Filling Meta-data Tables

The set of meta-data tables could be unique within the database, or at least
unique within a given database schema owner. With the case of multiple
sets of meta-data tables, the names of the tables should be the same across
schemas, with the schema owner identifying the subsystem. We propose
implementing these four tables in all schemas in the omds database. This
method automatically gives the database schema owner control over the
contents as well as the ability to extend the meta-data tables.

The ID integer-type column has been implemented as a simple primary key
in order to make joins between the tables faster for the database SELECT
table-join statements. Also, the standard replication methods prefer the
simple primary key. But as such, the ID value has little information content
for the user of the table, and the user will not be responsible for creating the
value and should not care what the value turns out to be. A global database
sequence will be used to provide unique ID values across the database,

accessible by all the schema owners and generated by a database trigger at
INSERT time.

In practice, the ID_TABLE number must be known at INSERT time when
writing to the CONDITIONS_COLUMN_DESCRIPTOR table. Given the
OWNER and TABLE_NAME of the row, the ID_TABLE can be extracted
in an insert database trigger and automatically filled before the insert takes
place.

Specific sub-detectors may find they wish to add columns to these meta-data
tables. We require only that the core columns as described here must exist in
the schema, and that these additional columns not interfere with the original
base columns. In particular, the CONDITIONS_SOURCE_DESCRIPTOR
table would be a likely place to store additional sub-detector specific
information.

The set of meta-data tables also describes the general type of “Value vs.
Time” tables which will be common for DAQ, Trigger, Luminosity, and
other monitoring, not just the PVSS/DCS sources of data. These tables will
be implemented for those monitoring schema as well.

3. Mapping from SQL Query to Root TTree

Given a simple SQL query, one can map the resulting data onto a Root
TTree object in a straightforward manner once the data-type mappings are
defined. See the following table for a proposed map.

Oracle Data Type Root Data Type TTree tag Leaf Type
NUMBER(1…11) Int_t /I TLeafI
NUMBER(12…22) Long64_t /L TLeafL
NUMBER(23…38) (?) Double_t /D TLeafD
NUMBER(n.m) m>0 Double_t /D TLeafD
FLOAT Float_t /F TLeafF
REAL Double_t /D TLeafD
VARHCAR2(n) Char_t /C TLeafC
DATE TTimeStamp (object) TLeafElement
TIMESTAMP TTimeStamp (object) TLeafElement
TIMESTAMP WITH TIME ZONE TTimeStamp (object) TLeafElement

BLOB ?
CLOB ?

In general the database servlets available from the Web Based Monitoring
home page at

 http://cmsdaq.cern.ch/cmsmon/

automatically produce such a root file for the user to download to their local
machine.

http://cmsdaq.cern.ch/cmsmon/

